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1. Program Overview 
This research program has focused on the development of novel numerical techniques for the 

solution of electromagnetic scattering problems that are accurate, fast, and robust. The specific 

advancements of this program have been: 

/)     The derivation of a high-order method of moment formulation with a quadrature point 

collocation scheme that is equivalent to a locally-corrected Nyström (LCN) method. 

//')    The development of mixed-order basis functions for general LCN formulations. 

Hi)   The demonstration of a high-order LCN formulation for the electromagnetic scattering by 

inhomogeneous material regions. 

iv)   The development of a hybrid volume/surface integral equation formulation for the 

electromagnetic scattering by composite material objects, 

v)    The   development   of  computer   software   (Mat-Scat)   for   the   simulation   of  the 

electromagnetic scattering by composite material objects based on a high-order LCN 

formulation. 

vi)   The application o f f ast iterative s olvers w ithin Mat-Scat, and t he de velopment o f t he 

Quadrature-Sampled Pre-Corrected FFT (QS-PCFFT) formulation. 

vii) The validation of the high-order solution techniques for a number of scattering problems. 

2. Accomplishments 

Through the course of this program, the following milestones have been accomplished. 

2.A High-order method of moment solution with Point-Based 
Discretization 

We have developed a new method of moment methodology based on high-order basis 
functions and a quadrature point collocation scheme [1,2]. By applying an efficient far-field 
transformation, the degrees of freedom can be mapped from the basis function to the quadrature 
points leading to a form that is identical to the Locally Corrected Nyström (LCN) method [3]. 
The high-order method leads to exponential convergence for smooth scatterers [2]. Exponential 
convergence has also been demonstrated for geometries with edge singularities through the use 
of singular basis and specialized quadrature rules [2, 4]. For arbitrary geometries, we have also 
demonstrated that the use of divergence-conforming mixed-order basis functions can 
significantly improve the accuracy of the method and greatly improve the condition number of 
the impedance matrix [5]. 
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2.B High-order solution for the scattering by inhomogeneous material 
volumes. 

A method of moment formulation with quadrature point sampling for the scattering by 
inhomogeneous material volumes has been developed and validated. The method has been 
shown to yield exponential convergence for canonical and non-canonical scatterers [6-9]. This is 
the first kno wn int egral-equation b ased electromagnetic s cattering s olution w ith a hig h-order 
representation of a material inhomogeneity. 

2.C Hybrid Surface/Volume integral equation formulation 
A novel integral equation method has been derived for a general hybrid surface/volume 

formulation. The integral equation formulation allows for the combination of arbitrary material 
surfaces, including conducting as well as penetrable materials, and inhomogeneous volumes. A 
computer program (identified as: Mat-Scat) implementing this technique using the proposed 
high-order method of moment formulation has been developed. The code has been fully 
validated for curvilinear quadrilateral and hexahedral cells with orthogonal mixed-order 
divergence conforming basis functions and quadrature point collocation. 

2.D Fast Solution Methods 
2.D.1 Quadrature Sampled Pre-Corrected FFT (QS-PCFFT) 
A novel solution algorithm referred to as the "Quadrature Sampled Pre-Corrected FFT" (QS- 

PCFFT) algorithm has been developed [4, 9]. This method is in the same class of methods as the 
PC-FFT [10] and the Adaptive Integral Method (AIM) [11]. The principal difference is that 
moments are never explicitly computed. Rather, the projection from the general discretization to 
the uniform grid is performed efficiently and to high order using Gaussian quadrature. The 
method naturally preserves the high-order convergence of the method of moment solution, even 
for singular basis functions [4]. The method scales as O(MogTV) for the scattering by material 
volumes or planar structures and 0(Ny2\ogN) for surface scattering. The QS-PCFFT algorithm 
has been implemented within Mat-Scat. 

2.D.2   Multilevel Fast Multipole Method 
A fast iterative solver based on the multi-level fast multipole solution [12-15] has also been 

implemented within Mat-Scat. The multi-level scheme is based on the algorithm proposed by 
Gyuer and Stalzer [16], and the fast spherical filtering scheme of Jakob-Chien and Alpert [17] 
was implemented to accelerate the disaggregation step of the MLFMM algorithm. 

2.E High-Order Mesh Generation 
The University of Kentucky scattering code Mat-Scat is capable of handling surface and 

volume elements of arbitrary order. The majority of commercially available mesh generation 
schemes are limited typically limited to quadratic or cubic elements. For the modeling of more 
complex geometries, an automated tool must be available for generating high-order meshes. 
Thus, we have developed a high-order mesh generation tool. The initial surface description and 
low-order mesh is first entered into a commercial tool such as SDRC Ideas™. The UK mesh 
tool can convert the coarse low order mesh into a high-order mesh with elements of arbitrary 
order. Other post-processing tools, such as extrusion to an arbitrary surface (e.g., for the 
modeling o ft hin m aterial c oatings) a nd m esh q uality c hecking ha ve also b een inc luded. A 
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graphical user interface (GUI) has been developed for the tool using JAVA. This makes the toll 
convenient to use and platform platform independent. 
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4.     Summary of Results 

4.A    High-order method of moment solution with Point-Based Discretization 

4.A.1 Formulation 
Consider the integral equation used to solve for a surface current density J(r'): 

rc(r)=\K(F,F')J{r')ds' (1) 
s 

where S is a smooth surface, ^"" (r) is the known forcing function evaluated at position r on S, 

K(r,F) is the kernel. S is discretized into Np curvilinear patches that represent the surface 

contour to high-order. The surface current J{r') is approximated over each patch by a basis 

function expansion: 

m»tKF«(?) (2) 
k=\ 

where, bk are constant coefficients and Fk {?') represent a set of smooth basis functions 

distributed over they11 patch that is complete to order Nk. A set of smooth test functions T, (r) 

with support over each patch and complete to order Nk is introduced. The inner product of (1) 

with each of the test functions is then performed, leading to: 

JTl{r)^{r)ds = \Tl(r) 
A''„   N, 

ds . (3) 

Nk Nk 

I iT^MWC(rJ = iT,(Fqm) 

THbkp\K(F,F)Fk(F)ds' 

On the m-th patch, the outer integral of (3) is approximated using a Nk -point quadrature rule that 

integrates exactly functions to at least order Nk: 

itbkpJK{fqm,F)Fk(F)ds' (4) 

After applying a simple linear transformation (see equations (5)-(7) in [1]), (4) is reduced to: 

r{r^=tlK\^yryk{?')ds' ^ 
where r    is a quadrature abscissa point on the mh patch. The discrete form in (5) appears to 

be a method of moment formulation with a quadrature point collocation scheme. However, 
it is equivalent to a method of moment procedure employing test functions up to order Nk 

with the outer integral evaluated by a fixed-point quadrature rule. 

In the regions where the patches are sufficiently far from the observation point, the kernel is 

smooth and the convolutional integral in (5) can also be approximated to high-order by a fixed- 
point quadrature rule.    Again, assuming an  Nk -point rule that integrates smooth functions 
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exactly to at least order Nk, the contribution to the right-hand side of (5) from patches that are 

sufficiently far from r   can be expressed as: 

A1* 

\ 
pefar k=\ 
II*. 

A't / -    \        /        \ 
(6) 

where r    are the abscissa points and co„   are the weights of the quadrature rule.   In operator 
in */> 

form, (6) can be expressed as: 

where the matrix [Lp] is matrix local to patchy with entries [Lp]kj = Fk{rjp), the vector k(/m is 

the kernel K{rlh,rq\ sampled at the quadrature points F^, and b  is the vector of coefficients 

weighting the basis functions. It is then recognized that 

7 = [>JX (8) 
where J are the currents evaluated at the discrete quadrature points. Thus, (8) implies a 

transformation of unknowns from the current basis to the quadrature points. This transformation 

is then carried into the near field region. In this region, the convolutional integral in (5) must be 

performed via adaptive quadrature to desired precision. In operator form, this is expressed as: 

Kb W 
where the fc-th element of vector Jcqm is = f K(F,r') Fk (F)ds', which is evaluated to desired 

JSp 

precision using adaptive quadrature. Next, applying the transformation of variables in (8), 
b = [L'lf J and (9) is rewritten as: 

£[4]"7-{l>J'*«.f7 <10) 

In summary, the contribution to the <7„,-th row of the impedance matrix derived via the method 

of moment procedure for far interaction can be expressed from (7) and (8) as: 
Z:=(KJ do 

and for near interaction from (10) as: 

It is observed that both (11) and (12) are identical to that derived via the Locally Corrected 

Nyström (LCN) method [2, 3]. Consequently, the proposed high-order method of moment 

(HO-MoM) procedure is equivalent to a LCN formulation. However, it is derived using a 

more classical paradigm understood by most practitioners. 
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4.A.2 Mixed-Order Basis Functions 

When applying the high-order method of moment (or LCN) procedure, it is assumed that the 

surfaces or volumes of the model are discretized using general curvilinear cells that model the 

surfaces to sufficient accuracy. The current density is then expanded over each cell with a set of 

local vector basis functions. As an illustration, we can assume general curvilinear quadrilateral 

surface cells. A basis function expansion for the current can be represented in the form: 

J, (u\u2) = ^5]PJx(u%(u2)/yli   (./, =0..M;;yt,=0..M,2), (13) 

J2 (u\u2) = b^a2Pj2 («')/>, (u2)/Jg~    (j2 =0..Ml;k2 =0..M2), (14) 

where, following the notation of Stratton [18], (u',u2) are the local curvilinear coordinates of 

the quadrilateral cell, a, are the local unitary vectors, yjg is the Jacobian, PJ (u) are /-order 

Legendre polynomials, and b/'k are unknown constant coefficients. The order of the basis 

functions are specified by M\. Classically, the LCN method has been proposed using a basis 

order that is complete to polynomial order/? [2, 3]. In this situation, M\ =M2 =M\=M\= p. 

This is referred to here as a polynomial-complete basis function set. Alternatively, a mixed- 

order basis function can be posed that is divergence conforming. That is, the divergence of the 

current density, which is directly proportional to the charge density, is complete to a polynomial 

order. This is accomplished if the current density is a mixed-order. A p-th order mixed-order 
basis function set is then proposed with M, = M2 = p +1 and M2 = Ml

2= p. 

The electric surface charge density within the boundaries of a surface cell is: 

jco ja ,=, Jg du v > 

'■•*'     "\   ' Pk (u2) + b2
l>'k>P, (u])    k2\   ' b"' 

8u]     ~*'v' >"'    ~hy    '     du' 

(15) 
 1_ 

ja 

where the range of j and k is governed by the type of basis function used. If a polynomial 

complete basis is used, the charge density is represented by an incomplete polynomial expansion. 

In fact, the highest-order basis function pairs (ju = ku =p,i= 1,2) will produce surface charge 

densities that are of mixed order. On the other hand, the mixed-order basis leads to a surface 

charge density that is polynomial complete to order/». 

It was shown in [19] by Cah§kan and Peterson as well as Gedney [5] that the polynomial- 

complete basis can lead to spurious solutions for geometries with edge singularities and that this 

can be remedied through the use of the mixed-order basis. This is somewhat intuitive for the 

following reason. If one observes the charge density at the singular edge, one expects the charge 

density to exhibit the same leading-order singularity as the current flowing transverse to the edge 

and as the normal derivative of the current flowing normal to the edge.   This can be well 
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approximated by the mixed-order basis. For the polynomial complete basis this is approximated 

by the lower-order terms, but there are additional spurious charges from the highest-order basis 

that will exist. For smooth scatterers, this does not occur and consequently either basis function 

can be used successfully.     However,  since the charge density is over-specified by the 

polynomial-complete basis, a poorly conditioned system results for the EFIE operator. 
When employing the mixed-order basis functions presented, an appropriate testing scheme 

must be implemented within the context of the LCN method. There are two choices. The first is 

that one can employ a single quadrature rule for a cell and then use a least square solution for the 

over or under-determined system to calculate the local corrections.   The other alternative is to 

employ a pair of mixed-order quadrature rules - one for each test vector - and solve a square 

matrix for the local corrections. We have implemented the latter option. 

Consider the mixed-order basis in which the charge density is polynomial complete to order/?. 
Two test vectors lx and t2 are introduced.   Each of the two test vectors are associated with a 

quadrature rule that is consistent with the order of the basis functions J, and J2. That is, given 

J, to be of order (p +1) x p , a (p +1) x p point quadrature rule is defined for the quadrilateral 

patch (this is done here as a product of one-dimensional Gauss-quadrature rules). The inner dot 
product of the integral operator with 7l is then performed at each discrete quadrature abscissa 

point. Similarly, the inner dot product of the integral operator with t2 is performed at the 

abscissa points of a p x (p +1) point quadrature rule. In this manner, a square linear system of 

equations results for the local corrections following the procedure outlined in [2, 3]. 

4.B    High-Order Solution of the Volume Field Integral Equation 
An inhomogeneous and isotropic dielectric object with relative permittivity sr (r) contained 

within a volume V and situated in a homogeneous free space is illuminated by an incident 

electromagnetic field E'"c with an eJ°" time dependence. The scattered field resulting from the 

impinging wave can be computed through the use of equivalent volume currents that are 

distributed within Fand that satisfy the electric field integral equation (EFIE) [20-22]: 

E (r)= .      J}r}-,   ,v + A*„ \\\G{r, r') .J(F)dv' (16) 

where E' is the incident electric field in the absence of the dielectric cylinder, k0 is the free 

space wave number, rjo is the free space wave impedance, G is the dyadic Green's function: 

G(F,F) = 
r=     1       A 

k2 gn(r,r) (17) 
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g (F,r') = e"'*"l?"?1/4;r|r-/;'|is the free-space Green's function, and  J(r)   is the equivalent 

polarization current density distributed over V which is defined as: 
J(r) = je>e0E"*(r)(er{r)-\). (18) 

where E"" is the total electric field in V. 

The solution to the EFIE in (16) will be obtained via the high-order method of moment 

scheme proposed in [2]. T o this end, Vis discretized with volumetric curvilinear cells that 

represent the surface defining V to high order. Within each cell, the current is expanded using a 

set of smooth vector basis functions that are complete to order p. A /?-point Gauss-quadrature 
rule of order 2p-l and with abscissas and weights (rin,a)J is introduced over each volume cell. 

At each quadrature point three-independent test vectors are introduced/;,,. A point-matched 

formulation is obtained by sampling (16) at the quadrature points, leading to: 

^(F)%J;/l^-n+^^-M^-F)-J^) dv' (19) 
ja>e0(ir(rm)-l) 

It is shown in [2] that the formulation in (19) is equivalent to that employing pth order test 

functions and a fixed point quadrature rule. It is also shown in [2] to be equivalent to a locally 

corrected Nyström (LCN) formulation [3]. 

The volume V defined by the dielectric scatterer is assumed to be discretized by curvilinear 

cells. The cells are currently assumed to be curvilinear hexahedron. Each cell is uniquely 

described by a local curvilinear coordinate system. The current within each hexahedron is 

expanded via a set of vector basis functions weighted by constant coefficients b„ as: 

J{r)^±bJ„{r-), (20) 
n = \ 

where the jn are the mixed-order basis defined in (13) modified for a three-dimensional 

hexahedral cell.    The test vectors are also chosen as the reciprocal unitary vectors so that 

tm-J'n=oifm*n- 

A quadrature r ule is also defined for e ach cell. For hexahedron, the rule is conveniently 

defined via a product rule of one-dimensional Gauss-Legendre quadratures. Note that a mixed- 

order quadrature rule is used for each basis function, leading to a square linear system of 

equations. 

To validate this scheme, consider the scattering by a spherical shell with a continuous radial 

inhomogeneity. The relative permittivity of the sphere is defined as: 

, ,      2.0 + -^ £=-7.0,   a<r<b 
s\r) = \ {b-a)2 (21) 

1, elsewhere 

where a = 0.3 m, and b = 0.5 m. The relative permittivity thus varies from 2.0 at the inner radius 

to 9.0 at the outer radius with a quadratic profile. The shell was modeled with only a single layer 
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of curvilinear hexahedral cells (a total of 24 cells) that exactly represented the inner and outer 

surfaces. The continuous dielectric profile was then modeled exactly within the curvilinear cell 

through the diagonal term in (19). The volume current density and RCS were computed using 

the proposed high-order scheme. The bi-static RCS of the shell resulting from axially incident 

vertically and horizontally polarized waves is illustrated in Fig. 1 for two different basis orders 

and is compared against the exact solution. For a basis order of3x3x3, there is some apparent 

error in the RCS (about 1 dB on average). For a basis order of4x4x4, the predicted RCS is 

indistinguishable from the exact solution at the given resolution of the graph. 

The mean relative error in the RCS as a function of unknowns for a single layer of 24 

hexahedral cells and various orders is illustrated in Fig. 2. The error is computed relative to the 

known analytical solution. Superimposed in this graph is the mean absolute error in the total 

electric field, again referenced to the analytical solution. Note that the maximum electric field 

magnitude in the shell was about 3 V/m. Exponential convergence is realized by the high-order 

method. 
The next case studied is a dielectric ogive shell. The geometry of this object is illustrated in 

Fig. 3. The shell has a uniform thickness of 0.05 m and is composed of a homogeneous 
dielectric with£r =2.56.     The ogive was discretized using a single layer of curvilinear 

hexahedron (as illustrated in Fig. 3). The mesh was generated using a commercial mesh 

generator and cubic elements were used. The bistatic RCS of the ogive in the 9 = 90° plane is 

illustrated in Fig. 4 for two different discretizations and are compared to a reference solution that 

was finely discretized. For this simulation, the frequency was 299.796 MHz and the incident 
field was incident on the tip of the ogive (#""'=90,^'"c =0).   Both vertical and horizontal 

polarizations were simulated. The results are indistinguishable for the resolution presented. The 

mean relative error in the bistatic RCS versus the total number of unknowns is presented in Fig. 

5. For this data, the error was computed relative to a finely discretized reference solution. For 

each curve, fixed discretizations were used - 24 cubic hexahedron and 56 cube hexahedron - and 

increasing order. For each data point, the basis order is provided on the graph (e.g., 4x4x2). 

The first two orders are the transverse coordinates and the third is the radial. Overall, the 

solution exhibits exponential convergence - though there is a stutter in the convergence for the 

56-cell discretization. 
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4.C    Hybrid Volume/Surface Field Integral Equation Solution 

4.C.1 Formulation 
Consider the electromagnetic interaction with an inhomogeneous material scatterer made of a 

composite of penetrable and conducting materials, as illustrated in Fig. 6. A radiating source 

with an e'6" time dependence can be placed either exterior or interior to the inhomogeneous 

object. Applying the equivalence principal, equivalent surface and volume sources are 

introduced that radiate the scattered field. From these sources, the integral equations will be 

posed that will allow for the unique solution of the equivalent sources. 
Following Fig. 6, a surface separating volumes Vi and Vj is denoted as S.tJ.  Let S^ denote 

the surface just inside Vh and S.j the surface just inside Vj. Equivalent current densities are then 

placed on all surfaces separating each material volume. The surface current densities are located 
on either S*. or S7.. Surface equivalent current densities on 5^. are posed as: 

J:=nxH     ,   M:,=-nxE ^ (22) 
K. s* 

where hj is the unit normal directed into Vj. Equivalent sources on surface S/V are defined as: 

J- ■■ h x H M: -h xE (23) 

where h. is the normal directed into V/.   The upper and lower currents can be constrained by 

enforcing the continuity of the tangential fields on StJ, leading to the identity: 

4t,=-4Wu. K=-Mu=Mu- (24) 

where it is recognized that n. =-nr   On the surface of a conductor, only the electric current 

density is supported. Consequently, 
Jip =hxH 

s* 
(25) 

Each material volume is assigned a background material profile (sih,juih).  This defines the 

volume equivalent currents within the material volume. Specifically, if (et,ju,)^ (£,b>Mb) 

JVl = jaeBeit 
'J!L-\ 

(26) 

MVl=jCQpi0V,t H 

where (sir,/iir) is the relative permittivity and permeability of the physical material medium. 

Note that if (e,,^,) = (£,i,,M,h)i me volume current densities are identically zero. It is also noted 

that on any surface S^, if (£lh,julh) = ^e/h,/Jjh^, no surface current densities will be assigned to 

that surface. 
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Fig. 6   Equivalent currents representing the scattered fields due to a plane wave impinging on an arbitrary 
inhomogeneous material scatterer. 

Each equivalent current density is residing in an equivalent homogeneous material volume. 
For example, J*., M^,JVi, Mv effectively radiate in a homogeneous space with material profile 

{elh,Hlh) ■ The equivalent currents are said to radiate a scattered field. The electric and magnetic 

scattered fields due to the current densities in Vi can be derived as: 

K°' (K, K) = 7|L, (Jcq) - K, (Mcq) (27) 

ST [K.^) = K, ft) + ^"'L, (Mw/) (28) 

where, 

L, ft, ) = -,*,/ 
A. 

^(FjG.p.F)^' 

K,(Xeg) = jVxG,(f,r')K(F')dQ' 

(29) 

(30) 

where Q is a surface for a surface integral and a volume for a volume integral, /  is the idem 
factor, or unit dyad, and G, (r,F) is the Green function for a homogeneous space with material 

profile (eih,jjih): 
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G,(?,n= 
„-A-f-H 

An I r - r' 
(31) 

and k, = co^sjJ^ . 

Appropriate integral equations must be posed to solve for the unknown equivalent current 
densities. Consider a material surface SiJ separating two material regions. From (22) and (23), 

the fields must satisfy the boundary constraints 
h, x E, 

r =-M,.j-n,xK 

■fi,*E7 

hxH" 

-n.xH, 

Mv+Ä,x£; 

*=J« 

Ä T 7 S n, x H, 

s;, 

s* 

■-J.j + h.xH* 

(32) 

(33) 

(34) 

(35) 

where Ef\H'"c are radiated by impressed sources in Vn E*"",H.ca' are radiated by equivalent 

currents in volume Vi (similarly in F), and hj = -hi has been assumed. It is also noted, that on 

S7j, the equivalent currents in V. contributing to Esfa',Hf" are -J.tJ and -Mir 

The constraints on the interior and exterior boundaries in (32) - (35) are used to formulate the 

integral equation for material boundaries. These equations can be combined since only two 

constraints are needed to solve for the two unknowns. They must be combined in a manner that 

avoids spurious "interior resonances." Two options are available within Mat-Scat. The first is 

the classical PMCHWT technique [23, 24]. This is equivalent to adding (32) with (33) and (34) 

with (35), which leads to: 
(36) 

(37) 

hxE';c 

hxHmc 

-hxE";c 

-hxH" 

= -nxE;cal 

= -fixH!cal 

,    A       rascal + nxE, 

+hxH:cc 

It is observed that the diagonal terms cancel. The diagonal terms resulting from the residuals of 

the principal value integrals of the K operators also cancel. Thus, the PMCHWT is a first-kind 

integral equation.   Furthermore, due to the VV term of the L-operator, the PMCHWT has a 

hypersingular kernel.   A consequence of this is that the operator is not expected to be mesh 

stable. That is, as the discretization is continually refined - increasing accuracy - the condition 

number of the discretized operator will grow. However, because of the VV term, the PMCHWT 

operator explicitly represents the quasi-static field affects, and it can be expected to model 

objects with geometric singularities well. 

We can also look at another interesting property of the PMCHWT operator.   Consider the 
situation when Im(^;) —> -jco, that is the limit that the material body becomes a PEC. It can be 

shown that in this limit, (36) will reduce identically to the EF1E and (37) will reduce to the MFIE 
in.   Also, consider the limit that e. —> oo.   In this limit, the boundary becomes a hard electric 
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boundary, and the fields in Vj will tend to 0, and M,v/ -» 0. It can be shown that in this limit, 

the operators in (36) and (37) are bounded. Consequently, the PMCHWT operator is stable 

relative to the refractive index of the material object. 

The second option available within Mat-Scat is a Müller formulation [25]. This formulation is 
derived by weighting (32) by sib, (33) by -ejh and adding the equations to obtain: 

Dually, (34) is weighted by jujh, and (35) by -jujb and adding them, leading to: 

(38) 

h,xnthH'\ + nlxpJhH
me\s_ =Jl,,(^

+Vjh)-t,xMlhH
xcal\s: -hxMjbH (39) 

The K-operator requires a principal value integral, which leads to a well known residue plus 

the principal value. After performing the principal value integral, (38) and (39) are written as: 

hxelbE"; + hlxejhE
1; 

i - 

■h+£ji, )-filxe„,E;c 

a:, 
■h,xsjhE^ 

h,xMihH'"c     +h,xMihH'-\    =-JIJ(Mlh+fiJb)-nlxMlbH'M     -nxMjbH 
'Y/ kY/        2 ''■! 

where, the surface integrals over Stj use the modified K integral: 

Kk-Xeq=jV,Gk(f,F')Xeci(F')dQ' 

(40) 

(41) 

(42) 

where r eS.; and k = i or /. 

It was observed by Müller that for this combined form, the hypersingular static terms arising 

from the L-operators will cancel with vanishing separation of the source and observation points 

([25], pg.  300).    Thus, the effective singularity of the combined operator is only  1/7?. 

Consequently, the Müller formulation is a second-kind integral equation that consists of a 

diagonal term plus a compact operator. As a consequence, the Müller formulation is expected to 

be well conditioned and mesh stable - that is the condition number will tend to a constant with 

increased mesh discretization. Since the kernel is not hypersingular, one can also expect that for 

smooth material bodies, the LCN method will converge exponentially, and to exhibit a rate of 

convergence s uperior t o t he P MCHWT formulation. A c aveat is t hat in t he ins tance w here 
e ■ » et, o r //.»//,, t he int egral e quations in v olume V. a re a mplified b y t he c onstitutive 

relations.  As a consequence, for high contrast materials, the error in the Müller formulation is 

amplified. 

In general, the Müller formulation is more accurate for moderate to low contrast materials 
(er < 20), and the PMCHWT formulation is more accurate for high-contrast materials 

Next, a on a conductor surface, one can constrain the total tangential electric field to be zero 

on the surface, leading to the familiar electric field integral equation (EFIE) [22]: 

h. x E" 
s* 

= -n, x t. 
s* 

(43) 
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The magnetic field is also constrained on a PEC surface using (25), leading to the magnetic field 

integral equation (MFIE) [22]: 

n. x H" JA Tj scat 

s.      ,,p-n,xH, 
•S'+„ 

(44) 

The linear combination of the EFIE and MFIE is referred to as the combined field integral 

operator (CFIE), which can be expressed as [22]: 

aCFIE '  ' ^i + (l-<*c.l.;M't-"*K 

a, TM t-Er'\     U{\-ac,n.)ri\Jl,p-hxHl 

(45) 

where aCFIE is a real constant, generally defined between 0 and 1, and t is a vector tangential to 

the PEC surface S: When aCFIE = 0, this reduces to the EFIE, and when aCFIE  = 1, this 

reduces to the MFIE. 

Next, in regions where the volume currents are non-zero, an additional constraint is levied. 

Given the volume currents defined in (26), (46) and (47) can be restated as: 
l\r) 

E'r(r)\     = 

H'r(r)\     = 
'      V    'IreK 

'(r) 

(')■ 

(46) 

(47) 

(48) 

(49) 

JVMoH, 

Note that (48) and (49) are only constrained in regions where Jv * 0 or Mv * 0. The scattered 

field is due to all equivalent currents present in Vj. 

Combining (36), (37) (or (38) and (39)), (45), (48), and (49) leads to a highly versatile integral 

formulation from w hich t he g eneral t reatment o f t he e lectromagnetic s cattering o f a rbitrarily 

inhomogeneous material scatterers can be applied. The introduction of the background material 

within each material volume can automatically eliminate volume cells in large homogenous 

regions. It also can lead to a better conditioned formulation when simulating high contrast 

materials. This formulation is also directly applicable to anisotropic media. 

A computer code based on this integral formulation has been developed. The code is referred 

to as Mat-Scat for general "material scattering." The code has been fully validated for surface 

and volume scattering using curvilinear quadrilateral and hexahedral cell discretization. The 

code can handle an arbitrary number of material regions. Also, either the PMCHWT or the 

Müller formulation can be applied to a material surface boundary.   The software also utilizes 
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curvilinear meshing of arbitrary order. Mixed-order basis functions are used to expand the 

current densities. While the basis order can be arbitrarily high, practically speaking, the highest 

order that has been simulated has been 17th order. The software is written in FORTRAN, and is 

platform independent. 

4.C.2 Validation 

The University of Kentucky Mat-Scat software has been validated for a number of canonical 

and non-canonical geometries. In this section, a representative set of validating results are 

presented. 

4.C.2.1        Scattering by Material Spheres 
Initially, consider the scattering by a PEC sphere that is coated with a thin dielectric shell. 

The PEC sphere has a radius a defined by k0a = 3.5. The dielectric coating has a relative 

permittivity of sr = 4-yO.l and an outer radius b defined by k0b = 3.8. The integral equation 

solution employed Müller's formulation for the dielectric boundary, and the CFIE with a = 0.2 

for the PEC boundary. Two meshes were used to simulate this problem. The first used a total of 

48 7th-order quadrilateral cells to model both the PEC/dielectric boundary and the dielectric/air 

boundary. The second mesh used a total of 108 7th order quadrilateral cells. For each mesh, the 

order of basis was increased from 2 to 6. Table 1 presents the mean error, total CPU time, and 

the condition number estimate for the LCN solution employing either the polynomial complete 
or the mixed-order basis functions for the two meshes. In this table, P is the basis order, Nc is 

the total number of quadrilateral cells, and TV is the total number of degrees of freedom (also, the 

rank of the matrix). For all discretizations the mixed-order basis exhibits improved solution 

error as compared to the polynomial complete basis. It is observed that the condition number 

resulting from the polynomial complete basis is much larger than that recorded for the mixed- 

order basis. This is predominately due to the fact that the polynomial complete formulation is 

not charge conserving, and the spurious charges in the solution introduce small singular values in 

the system matrix. 

Table 1   Scattering by a dielectric coated PEC sphere with PEC sphere radius k„a = 3.5, and outer shell radius k„a = 
3.8 computed with polynomial complete (P. C.) and mixed-order (M. O.) basis functions. 

N Mean Error CP U-s Condil tion # 
p Nc P.C. M.O. P.C. M.O. P.C. M.O. P.C. M.O. 
2 48 1296 864 0.49 0.29 98 69 123 45 
4 48 3600 2280 2.1x10"2 6.2x10"a 362 318 8711 48 
6 48 7056 6048 3.4x10"a 3.1X10"4 1965 985 10377 51 
2 108 2916 1944 5.8x10"2 0.10 231 190 126 43 
3 108 5184 3888 2.5x10"2 6.7x10"3 614 406 835 47 
4 108 8100 6480 3.6x10"a 1.0x10"3 2392 979 6217 49 
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Another example of a dielectric coated metal sphere is considered. A 10 cm radius PEC 
sphere is coated by a 1 cm thick spherical dielectric shell with relative permittivity sr = 9-/0.3. 

The sphere is illuminated by a plane wave at 1 GHz (effective radii of k0a = 2.1, kt)b = 2.3). This 

case was modeled using a combined CFIE/SIE formulation using either the PMCHWT SIE 

formulation or the Müller formulation, and CFIE/VIE formulations. For the CFIE/SIE 

formulation, a total of 48 curvilinear quadrilateral cells were employed, 24 on the PEC surface, 

and 24 on the dielectric surface. For the CFIE/VIE formulation, a total of 48 curvilinear cells 

were also used, 24 curvilinear quadrilaterals on the PEC surface, and 24 curvilinear hexahedron 

were used to model the dielectric shell. The error versus the number of unknowns was recorded 

as the basis order was increased. It is observed that for this case, the CFIE/Miiller formulation 

was superior in terms of computational cost. However, the CFIE/VIE outperformed the 

CFIE/PMCHWT formulation. This is generally true for homogeneous material problems with 

moderately low contrast materials. 
To study this somewhat further, consider the case of the scattering by a dielectric sphere. The 

radius of the sphere is 10 cm. The electromagnetic scattering was predicted at/= 2 GHz 
(i Äl5cm,/c0ö = 4.2), when the sphere had two different relative permittivities: er =1.2 and 

e =36-0.3/. The surface of the sphere was discretized into 54 high-order curvilinear 

quadrilateral cells (8th order isoparametric cells). The discretization was then refined by 

increasing the order of the basis functions (p-refinement). The RMS error in the RCS predicted 
by the LCN simulation versus the total of unknowns is illustrated in Fig. 8(a) for sr=\.2 when 

the basis order is increased from 2nd-order through 6th-order. Similarly, the RMS error in the 
RCS for sr = 36-0.3/ is illustrated in Fig. 8(b), as the basis order is increased from 2nd to 7th- 

order. (Note that the total number of unknowns for /?th-order mixed-order basis functions is: 
(p + l)xpx4xNc, where in this example Nc =54 cells [5]). For the low-contrast sphere (Fig. 

8(a)), both methods are converging exponentially. However, the Müller method is converging at 

a faster rate sine the PMCHWT operator has a hypersingular kernel. Over the whole range, the 

Müller method is also at a much lower level. For the higher contrast dielectric sphere (Fig. 8(b)), 

the Müller method again exhibits a faster rate of convergence. However, the level of error is 

higher for coarser discretizations. Consequently the PMCHWT formulation reaches 2 digits of 

accuracy with fewer unknowns than the Müller formulation. Due to the rapid convergence, the 

Müller formulation is more efficient if additional digits of accuracy are needed. 

The condition number of the matrices studied in the examples of Figs. 8(a) and 8 (b) are 

illustrated in Fig. 9. (The condition numbers reported were computed as the ratio of the 

maximum to minimum singular values of the impedance matrix.) As expected, the Müller 

method is stable relative to discretization due to the properties of the second-kind integral 

operator. The condition number resulting from the PMCHWT algorithm grows linearly with 

discretization on the log-log plot. This is due to the hypersingular kernel from the L operator. 
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This s ame e xample w as a lso s tudied f or a n h -refinement. T hat is, t he o rder o f t he b asis 

functions were held fixed at third order and the mesh was refined.. The RMS error in the RCS is 
illustrated in Fig. 10 for both the cases when er=l.2 and er =36-0.3./.  On the log-log scale, 

the Müller formulation leads to third-order convergence, which is exactly what is expected of the 

third-order basis functions. Optimal convergence is expected for this smooth geometry since the 

operator is a second-kind operator. On the other hand, the PMCHWT formulation converges 

approximately with 0(h] 5). The reduction in error convergence is due to the hypersingularity 

of the kernels, and the additional derivatives that are effectively applied to the basis functions. 

Again, for the low contrast sphere, the Müller formulation is the most efficient. Whereas for 

the high-contrast sphere, the PMCHWT formulation is more efficient for coarser discretizations, 

and crosses over with the Müller formulation at 3 digits. 
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Fig. 7   RMS error in the RCS of a dielectric coated PEC sphere (er =9-/0.3) and kaa = 2.1, k0b = 2.3 

Contract: MDA972-01-1-0022 University of Kentucky 



Final Report 

10 j 

1! \ 

(R
C

S
) 

p
 

\      ^ 

R
M

S
 E

rr
or

 
o

 8 
   

§ 
   

p 
o

   
   

o
   

   
o

 
V ■■ 
\ 

DARPA/DSO 

10 •5 ; 

10" 

-PMCHWT 
-H— Muller 

1600    3200    4800    6400    8000 

Number of Unknowns 

(a) 

10u 

10" 

10"' co 
U 

£   10- 

LU 
CO 

10"' 

g    10"' 

10"' 

10"' 

""'v I '   ■ T  

 \  :'■  

\         * 
--:---Mu!ier 

  r" >CV  - 
* X 

> 

i                 i 

\                    \^ 
■■  --   \- \KV- 

''<.                                 ?' 

"if.' 

!                             i 
3000   6000    9000 1.2 1041.5 104 

Number of Unknowns 

(b) 

Fig. 8   RMS error in the bi-static RCS for the scattering by a dielectric sphere versus the total number of unknowns 
based on calculations made via the LCN discretization of the Müller, PMCHWT, and PMCHWT-minus 

(PMCHWT-) formulations, (a) £r=\.2 (b) £r = 36-0.3 j . 

104 

1000 

n 
£ 

100 
c o 
fj c 
o 
O 

10 

-PMCHWT (a) 
-Muller (a) 
-PMCHWT (b) 
- Muller (b) 

100 1000 104 

Number of Unknowns 

Fig. 9 Condition number of the matrix arising from 
the LCN discretizationc of the dielectric 
sphere with the PMCHWT or the Muller 
formulation versus the total number of 
unknowns   for   increasing   order   and:   (a) 

sr = 1.2 (b) er = 36-0.3y. 

0.1 

0.01 

CO o 
£. 0.001 

0.0001 

irr 

1(T 
1000 

 ■   r  

(SI 
V 

v, ■ - 

... 
—f—PMCHWT (a) 
--■-.-- Muller(a) 
-•- PMCHWT(b) 

--■--Muller(b) 

 *> ~ 

 i  

10' 
Number of Unknowns 

Fig. 10 RMS  error  of the  RCS   for  the  dielectric 
sphere for fixed order [p = 3) and increasing 

number  of cells   when   (a)   £r =1.2    (b) 

£,.=36-0.3j. 

4.C.2.2        EMCC Targets 

A number of the EMCC Targets have been simulated using Mat-Scat to validate the accuracy 

and efficiency of the software. A number of those are reviewed here. 

Initially, consider the EMCC wedge cylinder plate (Fig. 11 (a)). The plate lies in the z = 0 

plane and the center axis of the plate (through the tip) is aligned along the x-axis.    The 
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curvilinear mesh used to represent the geometry is illustrated in Fig. 11 (a). Note that curvilinear 

cells were only needed near the curved circular boundary. Linear quadrilaterals were used to 

model the remainder of the target. The monostatic RCS at an elevation of 10° off the z = 0 plane 

($ = 80°) as calculated via the LCN solution of the EFIE using mixed-order basis functions is 

presented in Fig. 11 (b). These results can be compared to measured r esults and computed 

results published by Woo, et al., in [26] and reproduced in Fig. 11 (c). Excellent agreement is 

seen, even for the lowest order. The CPU time and problem dimensions are recorded in Table 2. 

The CPU times were recorded on a single 750 MHz HP-PA RISC processor. The total CPU time 

includes the calculation of 180 solution vectors (1 degree spacing). 

Next, consider the EMCC metallic single ogive [27]. The single ogive target has a half angle 

of 22.62 degrees, a total length of 10 inches, and a maximum radius of 1 inch. The major axis of 

the ogive is aligned along the x-axis. The ogive approximated by 72 seventh-order curvilinear 

quadrilaterals is illustrated in Fig. 12 (a). The monostatic RCS predicted using the LCN method 

is illustrated in Fig. 12(b) for a frequency/= 1.18 GHz, and in Fig. 13 (a) for/= 9 GHz. In both 
cases, the RCS was sampled in the 9 = 90° plane with 1 degree increments in ^. These results 

can be compared with measured data and independent computations published in [27], and 

reproduced in Fig. 12 (c) for/= 1.18 GHz, and Fig. 13 (b) for/= 9 GHz. Excellent agreement is 
observed. At/= 9 GHz, the ogive is approximately 7.6 X0 in length and 0.76 A0 in radius. This 

was modeled with 288 cells withp+1 = 4 and polynomial complete basis. This lead to a total of 

only 9,216 unknowns. The total fill time was 839 s on a single 750 MHz HP PARISC processor. 

The factor and solve time for 180 angles was 1,278 s. 

The next case studied was the EMCC metallic double ogive, illustrated in Fig. 14 (a). The left 

half of the ogive has a half angle of 46.4 degrees at the tip and a half length of 2.5 inches. The 

maximum radius of the half ogive is 1 inch. The right half of the ogive has a half angle of 22.62 

degrees at the tip, a half length of 5 inches, and a maximum radius of 1 inch (where the two half 

ogives meet). The ogive was aligned along the x-axis. The monostatic RCS was again 
computed via the LCN method. A graph of the RCS versus <j> computed in the 0 = 90° plane is 

illustrated in Fig. 14 (b) at/= 1.57 GHz, and in Fig. 15 (a) at/= 9 GHz. Note that </> = 0 

corresponds to the plane wave directed at the 22.62 degree tip. The results are to be compared to 

measured data and independent calculations published in [27] and reproduced in Figs. 14 (c) for 

1.57 GHz and 15 (b) at 9 GHz. Again, excellent agreement is realized. 
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Fig. 11 EMCC wedge cylinder plate, (a) curvilinear cell discretization, (b) RCS computed via the LCN method with 
mixed-order basis for p+1 = 5, 6, and 7, and, (c) results from [26]. 

# cells P+1 N Fill Total CPUs 

64 5 2,560 197.3 s 245.5 s 

64 6 3,840 408.0 s 535.2 s 

64 7 5,376 696.8 s 996.0 s 

Table 2. Dimension and Computation Time for the EMCC Wedge Cylinder Plate (CPU time recorded on a single 
750 MHz HP-PAR1SC processor) 

Next, the RCS of the metallic double ogive coated by a thin lossy dielectric coating was 

analyzed. The geometry is illustrated in Fig. 16 (a). The coating was added on by extending the 

surface of the double ogive by 10 % along the surface normal. Thus, the maximum radius of the 

coating is 1.1 inches.  The left half length of the coated ogive is 2.75 inches, and the right half 

length of the coated ogive is 5.5 inches.  The coating was assumed to be isotropic homogenous 
with a relative permittivity sr =9-y'0.3.  The monostatic RCS computed in the   6 = 90° plane 
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is illustrated in Fig. 16 (b) as computed via the LCN with a combined field surface integral 

equation formulation, as defined in Section 2.1. For this discretization, the RCS has converged 

to < 1 % accuracy with fourth order basis. 

Next, the RCS of the NASA Almond is studied [27]. The NASA almond is a challenging 

structure in that the geometry is singular at the two tips and there is a high-rate of curvature in 

the geometry. An example of a curvilinear mesh used to model the almond is illustrated in 

Fig. 17 (a). The monostatic RCS of the almond was computed in the zero elevation plane 
(0 = 90°) as a function of the azimuthal angle <j>. The broad side of the almond lies in this 

plane, and <j> = 0° corresponds to incidence on the sharp tip. The RCS of the Almond predicted 

by the LCN method at 7 GHz. The LCN simulation employed a 140-cell eighth-order 

curvilinear mesh and mixed-order basis. The RCS predicted by Mat-Scat is illustrated in Fig. 17 

(b) for horizontal polarization (HH) for fifth and sixth-order discretizations, requiring 5,600 and 

8,400 unknowns, respectively. The difference between these two simulations is < .001 dB. A 

Galerkin simulation employing low-order basis functions was also used to simulate the Almond. 

The Galerkin simulation utilized a mesh consisting of 21,120 bi-linear quadrilaterals, supporting 

31,680 zeroth-order divergence conforming GWP0 basis functions. The low-order Galerkin 

simulation still has not converged for angles of incidence near the tips of the almond, whereas 

the LCN solution has converged with far fewer unknowns. Figure 17(c) compares the RCS as 

predicted by the LCN solution of the CFIE with mixed-order basis versus that computed with 

polynomial-complete basis functions. Both simulations used the same discretization as that in 

Fig. 7 and sixth-order basis functions. The polynomial complete basis still results in significant 

error for incidence near the tips. These results can be compared against measured data and 

independent computations published by Woo et al. in [27], and reproduced in Fig. 17 (d). 

Finally, consider the case of the thick trapezoidal plate [28, 29] coated along the edges with a 

thin dielectric coating (see Fig. 18). This geometry has also been referred to as the EMCC Dart. 

The base of the PEC plate is 7 feet long and 3 feet high. The top of the plate is 3 feet long. The 

plate is 1 inch thick. The edge of the plate is coated with uniform dielectric coating with relative 
permittivity er =4.5-j9.   The coating is 2 inches wide (except at the corners) and is 1 inch 

thick. The plate and coating were modeled with a total of 158 bi-linear quadrilaterals. The plate 

is situated in the z = 0 plane. The monostatic RCS of the plate was computed via the LCN 
method with mixed-order basis in the zero degree elevation plane {6 = 90°).  The angle <j) = 0° 

represents incidence on the sharp tip of the plate. The RCS is illustrated in Figs. 19 (a) and (b). 

These results can be compared to Fig. 7 of [29]. The vertical polarization converges quite well 

for order q = 5 (N= 9,200). Whereas, the horizontal polarization requires q = 6 for convergence 

(N= 13,800). 
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Fig. 12 EMCC metallic single ogive, f = 1.18 GHz. (a) Patch discretization - 72 seventh-order curvilinear cells, (b) 
RCS computed via the LCN method for p+1 = 3, 4, and 5, (c) results from [27]. 
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Fig. 13 EMCC metallic single ogive, /= 9 GHz, (a) RCS computed via the LCN method for p+\ =4, and 288 
seventh-order curvilinear cells, (b) results from [27]. 
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Fig. 14 EMCC metallic double ogive, /= 1.57 GHz, (a) discretization with 56 seventh-order curvilinear cells, (b) 
RCS computed via the LCN method forp+] = 4, and, (c) results from [27]. 
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Fig. 15 EMCC metallic double ogive, f = 9 GHz, (a) RCS computed via the LCN method with 224 cells and p+1 
4, (b) results from [27]. 
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Fig. 16 Coated EMCC metallic double ogive,/= 1.57 GHz. Coated with thin dielectric coating with sr =9-y'0.3 . 

(a) Curvilinear discretization, (b) RCS (monostatic) computed in the 6 = 90° plane via the LCN method for 
p+\ =4, 5, and 6. 
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Fig. 17 NASA Almond,/ = 7 GHz, (a) discretization, (b) RCS computed via the LCN method forp+1 = 3 via the 
CFIE and MFIE with polynomial complete basis as well as a Galerkin scheme with RWG basis (HH), and, 
(c) LCN method with p = 5 via the EF1E with mixed-order basis as compared to a Galerkin method with 
RWG basis (HH), (d) results from [27]. 
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Fig. 18 Coated trapezoidal plate - 0.0254 m thick PEC plate with a 0.0508 m dielectric edge coating er - 4.5 - ß . 

The plate is located in the z = 0 plane. 
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(b) 

Fig. 19 Monostatic RCS of the coated trapezoidal plate computed via the LCN method in the zero elevation plane at 
1 GHz. (a) V-V polarization, (b) H-H polarization. 
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4.D    Fast Solution Methods 

4.D.1 The Quadrature Sampled Pre-Corrected FFT Algorithm 

We have developed a novel fast, high-order solution procedure referred to as the Quadrature 

Sampled Pre-Corrected FFT (QS-PCFFT). The method accelerates far-interaction terms of an 

integral operator using the discontinuous FFT [30], which combines Gaussian-quadrature 

integration with the FFT. We have applied the method to our high-order method of moment 

scheme with point-based discretization (equivalent to the locally corrected Nyström) for 

electromagnetic scattering. This is briefly described in the following. 

Consider the electromagnetic scattering by a PEC object. The electric field integral equation 

(EFIE) can be used to solve for the currents induced on the PEC surface 5. The EFIE is 

described as: 
E'(r)= JJjG(r,r')-J(r')</r' (50) 

s 

where E' is the incident electric field, k0 and JJ0 are the free space wave number and wave 

impedance, G is the dyadic Green's function: 
f 

G{r,r') = jrj0k„ kl 
gn(r,r') (51) 

g0(r,r') = e A|r r|/4;r|r-r'|  is the free-space Green's function, and J(r)  is the equivalent 

current density. Using the method of moment procedure detailed in [2] leads to a discrete linear 

system of equations: 
e = Zb (52) 

where Z is a dense matrix, e represents the known forcing vector and b is the unknown solution 

vector.. 

It is assumed that the linear system in (52) will be solved using an iterative scheme.   Thus, 

each iteration will require a matrix vector product.  This will be accelerated using the proposed 

fast scheme. Initially, the impedance matrix is decomposed into two parts: 
Z = Z"ear+Zfar. (53) 

where, Z"mr represent the near-field blocks that are computed to desired precision using 

adaptive quadrature. Zfar represents the far-field blocks that are computed efficiently using 

single-point evaluations of the kernel. The proposed fast scheme will accelerate the product of 

the matrix-vector product involving Zfar. This is described in the following. 

Due to the translational invariance of the Green's function, the convolution of the current with 

the d yadic G reen's function c an b e computed e fficiently for far int eractions v ia t he dis crete 

Fourier transform (DFT). Here, the DFT is performed using the "discontinuous-FFT" (D-FFT) 

recently introduced by Fan and Liu [30].   This method allows one to compute the FFT of a 
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discontinuous and/or singular function to controllable accuracy. Since the method is based on a 

quadrature sampling, it is ideal for a Nyström discretization. 

Fan and Liu's discontinuous FFT method is extended here to multiple dimensions.  Consider 
the FFT of a multi-dimensional function /(r) distributed on Q.  Q is discretized into L general 

curvilinear cells, as governed by the method of moment discretization.  The multi-dimensional 
discrete Fourier transform of /(r) can be defined as: 

/(n) = £j7(r)e'2™Vn (54) 

where n =(«,,«2,...) defines the index of the discrete Fourier domain.   The integrals are then 

approximated via an appropriate numerical quadrature rule: 

where Jg^ is the Jacobian evaluated at the abscissa point r'q on the /-th curvilinear cell, and 

f - f(r'). A uniform grid with spacing Ax is superimposed over the general discretization (see 

Fig. 7).    The indices of the multi-dimensional grid is defined to have physical coordinates 
rm =(w,Ax, m2Av,...).  The exponential function at the indices of the uniform grid is expressed 

as: e'1™'"'".  Since the exponential function in (55) is a smooth function over all space, it can be 

interpolated from the uniform grid indices to the quadrature points as: 

s™--^MV™- (56> 
where Om (r') are smooth interpolation polynomials. (It is noted that the summation in (56) is 

taken over the entire uniform grid. However, the interpolation polynomials Om (r^ J are non- 

zero only in a region local to r'). Then, combining (56) with (55), leads to 

/=1   <H m=0 

The order of summation is then rearranged as: 
M 

m=0 

M 
(58) 

=2>y2*"r- 
n=0 

Consequently, f(n) is evaluated efficiently for all values of n in the discrete space via the FFT. 

The discontinuous FFT in (58) is used to evaluate a matrix-vector product involving Zfc"'. Let 

j be the vector of currents at the quadrature points. Then, the FFT of j is expressed in operator 

format as 

j(n) = z?{^j}. (59) 
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where the operator PF is a highly sparse matrix with elements governed by the double summation 

in (58) and $ is the multi-dimensional FFT. Next, the scattered field due to j can be computed 

at the uniform grid points using: 

«■<o=-r'{,r{ö}-*{4 (60) 

= -HWj 

where the dyadic Green's function G is evaluated at the uniform grid points referenced to the 

origin.   The field must be evaluated at the quadrature points.   Since the field away from the 

source is smooth, it can be interpolated using the polynomials Om (r'q). Consequently, 

e*(r>q) = -VTHW]. (61) 

where Wis a sparse matrix. Furthermore, it can be shown that W = aV, where cö is a diagonal 

matrix with the <7/-th entry Jg1^ . 

Finally, we can express: 
Zfari = VTHW\ (62) 

where j is the vector of currents at the quadrature points. 

Two items should be realized at this point: 1) the far field computation is limited to regions 

where the fixed point quadrature provides sufficient accuracy to the convolutional operator, and 

2) the dyadic Green's function is hypersingular at vanishing separation of the source-observation 

point pair. Since the FFT is only applied in the far-region, it is sufficient to zero out the dyadic 

Green's function in the vicinity of the origin. Next, since (62) is a global operator it will lead to 

non-zero fields in the "near-region". This error is compensated for by "pre-correcting" Znear 

[10]: 
2"»r = pear _yTHW (63) 

The system matrix in (53) is then expressed as: 
Z = Z"car + VTHW. (64) 

This fast scheme is referred to here as the QS-PCFFT method. This technique can be 

compared to both the PC-FFT [10, 31, 32] and AIM methods [11, 33-35]. The most distinctive 

difference between these techniques and the QS-PCFFT is the projection to the uniform grid. 

Both the AIM and the P C-FFT methods equate "moments" computed via monomials on the 

uniform grid and the current basis. This computation is somewhat analogous to computing the 

weights of a numerical quadrature rule. However, the Gaussian quadrature rule employed by the 

D-FFT inherently integrates these moments to higher order - even for singular or discontinuous 

functions using the appropriate quadrature rule. In fact, the weights and abscissa are chosen to 

realize optimal convergence. 

It is next recognized that the QS-PCFFT computes the far interactions to the same precision as 

the fixed point-quadrature integration.  Thus, the precision of the far-field calculation is known 
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relative to a more rigorous adaptive quadrature evaluation. The break between the near and far 

interaction is thus specified by the quadrature order and a desired error tolerance. 

The complexity and memory requirements of the QS-PCFFT will scale in a similar manner as 

the PC-FFT and AIM methods. Since Z"car is bound near the diagonal, filling and storing this 
matrix will scale with problem dimension as 0{N) (for a fixed order).   Furthermore, pre- 

correcting the near impedance matrix will also scale as O(N) since it is a local operation. 

Iterative solutions require a matrix vector multiply, which is performed with the operator in 
(64). The product with Z"ear will scale as O(N). The scaling of the product performed via the 

operator V7HW will be dependent on the distribution of quadrature points. If the quadrature 

points densely populate the discrete space so that the uniform FFT grid dimension scales linearly 
with the number of unknowns, then V7 HW will have a complexity that scales as O(NlogN). 

However, if the quadrature points sparsely populate the discrete space (e.g., a three-dimensional 

metallic surface such as a sphere), then the complexity can scale as 0{NYl log N). Thus, the QS- 

PCFFT method is most economically applied to problems that involve a more densely 

distribution of unknowns - that is, where the unknowns occupy much of the problem space. 

The QS-PCFFT is an approximation of the convolution rather than an asymptotic expansion of 

the kernel. Therefore, the dimension of Z"mr is not a function of electrical lengths, but rather a 

function of discretization. Consequently, the method can be applied to both low and high 

frequency problems with equal effectiveness. 

To demonstrate the efficiency of the proposed scheme, consider the electromagnetic scattering 

by an array of circular rings. The unit cell of this array (illustrated in Fig. 8) is situated in a z = 

constant plane and has a dimension of 1.5 X x 1.5 X. The curvilinear cells used to represent the 

rings are illustrated in Fig. 9. The interpolating grid of a 6th order polynomial cell is also 

illustrated for one of the cells in ring #2. Jacobi polynomials with singular weights that 

appropriately model edge singularities were used for basis functions. A Gauss-Jacobi quadrature 

rule was used for the Nyström formulation and the QS-PCFFT. Since the quadrature rule 

integrates the singular basis to high order, the QS-PCFFT is still exponentially convergent 

- even for singular basis functions. 
The bi-static RCS of a 10 x 10 array of the unit cells is illustrated in Fig. 10 computed with the 

discretization in Fig. 9, with 3rd order basis and 3x3 point quadrature rules on each patch. A 

512 x 512 point FFT was used for the QS-PCFFT solution, with the uniform grid being three 

times the global dimension of the array (45 X x 45 X). The error is estimated to be ~1 % for this 

discretization. The RCS was also computed using FISC [36] employing RWG basis on linear 

quadrilateral cells [13, 37]. Two different discretizations were used for the FISC simulations 

resulting in 17,100 (~ 10 cells per wavelength) and 113,400 unknowns (~25 cells per 

wavelength). The results of the higher discretization is much closer to the LCN solution. 

Contract: MDA97 2-01-1-0022 31 University of Kentucky 



Final Report DARPA/DSO 

The CPU times and memory of the simulations on a single 750 MHz HP-PARISC processor 

are recorded in Table 3. (Note that the LCN/QS-PCFFT simulation used double precision, and 

the FISC simulation used single precision.) It is observed that as the discretization of the FISC 

simulation was increased, the memory increased more dramatically. The reason for this is that 

since the finest level of the FMM is fixed. Consequently, the number of cells in the finest groups 

increases. This increases the dimension of the block matrix that must be stored. 

To study the scaling of the complexity of the QS-PCFFT solution, the dimension of the array 

of circular rings in Fig. 8 was increased from lxl to 20x20. The discretization used for each 

unit cell was fixed to 3rd order basis and 3x3 point Gauss-Jacobi quadrature rules. The size of 

the FFT was also scaled with the problem domain. The CPU times required for the matrix fill 

and a matrix-vector multiplication are presented in Fig. 10. Also overlaying these curves are 

curves illustrating 0(N) and 0(NlogN) complexity of the tasks, respectively. 
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Uniform grid with spacing Ax indices xm overlaying curvilinear cells discretized by quadrature 

abscissa points x' . 

1.5/1 

1.5/1 
Fig. 21 Illustration of the curvilinear cells used to model one unit cell of the ring array.   The center coordinates 

{xc,yc)l    Inner/Outer    Radius     (rt,r0)     of    the    five    rings    are:    #1 (0.5A,0.5A.)/(0.\A,0.25A), 

#2 (0.5A,0.5A)/(0.35A,0.5A), #3 (0.2A,\.2A)/(0.\A,0.2A), #4 (l.2A,\.2A)/(0.\A,0.2A), #5 (\.2A,02A) 

/(0.1A,0.2/t)   One patch on ring #2 illustrates the discretization of a sixth-order polynomial cell. 

Contract: MDA972-0I-1-0022 32 University of Kentucky 



Final Report DARPA/DSO 

60 

50 

40 

30 

20 

V-V Polarization 

HO-MOM (QSPCFFT) (43,200 unk) 
RWG (MLFMA) (17,100 unk) 

•RWG (MLFMA) (113,400 unk) 

60 

50 

40 

30 

20 

H-H Polarization 

■ HO-MoM (QSPCFFT) (43,200 unk) 
RWG (MLFMA) (17.100 unk) 

- RWG (MLFMA) (113,400) unk 

30        45        60        75        90 

Elevation 

(b) 

Fig. 22 BistaticRCS of the ring array with 10x10 unit cells (a = b = 1.5 X) with (6>',f) = (0°,0°) computed via the 

present method as compared and using FISC with RWG basis and the MLFMA [36]. (a) V-V polarization, 
(b) H-H polarization. 
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Fig. 23 CPU time for the matrix fill and the time per BICGSTAB iteration versus the number of unknowns recorded 
on a single 750 MHz HP-PARISC processor as the ring array is scaled from lxl to 20 x 20 array. Also 
overlaid are curves with slope TV and slope of MogN. 

Unknowns Fill Time Solve Time Memory Total CPU 

QSPCFFT 43,200 658 s 415s 109 MB 1,074 s 

FISC 17,100 124 s 1,562 s 32MB 1,686 s 

FISC 113,400 7,930 s 7,930 s 331 MB 11,853 s 

Table 3. Scattering by a 10 x 10 circular ring array recorded on a single 750 MHz HP-P ARISC processor 
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4.D.2 The Multilevel Fast Multipole Method (MLFMM) 

A fast iterative solver based on the multi-level fast multipole solution [12-15] has also been 

implemented within Mat-Scat. The MLFMM offers a more general fast iterative solution 
algorithm that will scale as 0(N log N) for general three-dimensional scattering problems. The 

multi-level scheme implemented is based on the algorithm proposed by Gyuer and Stalzer [16], 

and the fast spherical filtering scheme of Jakob-Chien and Alpert [17] was implemented to 

accelerate the disaggregation step of the MLFMM algorithm. For multi-region problems, a 

separate multipole expansion is performed in each background region. 

As an illustration, consider again the EMCC metallic ogive in Fig. 12(a). Both the MLFMM 

and the QS-PCFFT fast iterative solvers were used to simulate the RCS at 9GHz.  The surface 

was modeled with 288 curvilinear surface cells.   The surface currents were modeled with 5l 

order basis - leading to a total of 11,520 unknowns.  For the MLFMM, the smallest group size 
was set to 0.5   J^.    The QS-PCFFT used a uniform FFT grid that had a dimension of 

108 x 20 x 20. The CPU times and memory required by the fast algorithms are compared with a 

direct solve in Table 4. A small enough problem was solved to compare against a direct solution 

algorithm. It is also noted that the results simulated via fast solvers is as accurate as that solved 

via the direct solver. That is, both the MLFMM and the QS-PCFFT preserves the accuracy of 

the simulation. 

Filling time (S) Solving Time (S) Memory Usage (Mb) 

Direct Solver (LU) 1,049 2,239 2025 

QS-PCFFT 404 450 46.7 

MLFMA 315 540 71.50 

CPU time and Memory usage comparison of fast algorithms with direct solver at 9GHz. 
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t 

4.E    High-Order Mesh Generation 

High-order methods such as the LCN method are most efficient when employing higher-order 

basis o n 1 arge s mooth c urvilinear p atches. T he r eason for t his is s imple: hig her-order b asis 

converge more rapidly than lower order basis. Thus, with the LCN method it is desirable to 

model geometries with large curvilinear cells that represent the surface to sufficient accuracy. In 

practice, cells with average edge lengths on the order of one wavelength are quite typical. Thus, 

it becomes imperative to employ isoparametric curvilinear patches that accurately model a 

surface of arbitrary curvature. If one can not support such patches, then one is forced to use a 

refined discretization - thus losing the advantage of the high-order method. For classical low- 

order techniques, this has not been an issue since the slow convergence requires one to resolve 

the surface with a minimum of 10 to 20 edges per linear wavelength to get reasonable accuracy. 

Often, such fine sampling is also enough to represent a curved surface to sufficient accuracy 

using a piecewise linear approximation. 

Most commercial mesh generation programs are limited by the order of curvilinear cells that 

can be generated. Most CAD packages provide linear triangles and/or bi-linear quadrilaterals. 

Some will generate bi-quadratic and very few will generate up to bi-cubic triangle or 

quadrilateral elements. Unfortunately, this is insufficient for a true high-order method, which 

requires discretization to arbitrary order. This is illustrated through a simple example. Consider 
the electromagnetic scattering by a PEC sphere of radius a defined by k0a = 6 . The sphere was 

discretized with 24 quadrilateral curvilinear cells as illustrated in Fig. 24(a). The basis function 

order was fixed atp = 9, leading to 3,456 unknowns. The bi-static RCS was then predicted by 

Mat-Scat as the order of the curvilinear cell was increased from n = 1 to n = 12. A graph of the 

error in the RCS relative to an exact Mie-series solution is illustrated in Fig. 24(b). A very 

important observation is that despite using high-order basis functions (9th-order), the error in the 

RCS is limited by the error in the discretization of the geometry. That is, if we were limited to 

bi-cubic quadrilateral cells (3rd order), then the simulation would only provide 2 digits of 

accuracy despite using 9th-order basis functions. Whereas, minimum error is realized with a 
mesh that is of order n = p +1 (10th order), resulting in 6 digits of accuracy. 

The error in the area of the sphere as approximated via a 9x9-point Gauss-Legendre 

quadrature rule on each patch is also graphed in Fig. 24 (b). It is very interesting to observe that 

the errors in the RCS and the area follow the same general trend. This shows that there is a 

direct correlation in the accuracy of the surface model and the accuracy of the EM scattering as 

predicted by the LCN method. Thus, to accurately and efficiently predict the scattering by com- 

Contract: MDA972-01-1-0022 35 University of Kentucky 



Final Report DARPA/DSO 

-*— Error (RCS) 
-•— Error(Area) 

0.001 

LU 

10"s 

0 12     14 4       6       8      10 

n (Cell order) 

(a) (b) 

Fig. 24 (a) Illustration of a 24 cell 5,h-order quadrilateral discretization of a sphere, (b) Relative mean error in the 
RCS of a sphere of radius k0a = 6 computed via the LCN method with ninth-order basis versus the 
interpolation order n of the 24 curvilinear cells. Also compared in the graph is the relative error of the area 
of the patched sphere. 

plex geometries with a high-order method, it is imperative to have a high-order mesh description. 

Currently there are no commercially available CAD tools that provide true high-order 

modeling. To efficiently model complex geometries with Mat-Scat, a high-order mesh 

description is necessary. Thus, we have developed a mesh processing tool that can generate a 

high-order mesh, to arbitrary order, from a low-order mesh generated by a commercial CAD 

tool. The mesh processing tool is named UKY-MeshTool. The software has a user friendly GUI 

interface written in JAVA (see Fig. 25). 

The UKY-MeshTool, provides high-order surface/volume meshes for: 

o   Surfaces: high-order quadrilateral or triangular elements. 

o   Volumes: high-order hexahedral, prism, or tetrahedral elements. 

It is emphasized that MeshTool does not generate the initial discretization. Rather, it reads in 

a linear mesh (quadrilateral, triangle, hexahedral, or tetrahedral) generated by another CAD tool 

Currently, the import format used is the universal file format of SDRC iDEAS™. A high-order 

mesh is then generated in one of two ways. For canonical geometries, where individual surfaces 

can be expressed in an analytical form, a scripting software can be used to provide a surface 

description that MeshTool uses to generate a high-order mesh (c.fi, Fig. 26). The second manner 

is to read in a coarse and fine-mesh of the same geometry from the CAD software. This requires 

the CAD software to support a "mesh-refinement" feature that refines individual elements of a 

given coarse mesh. MeshTool does not require any specification of hierarchy of elements. 

Rather, it locates nodes shared by the coarse and fine meshes, and then automatically constructs 

the hierarchy of elements and builds the higher-order mesh. 
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Fig. 25. UKY-McshTool GUI Interface for generating and processing high-order curvilinear meshes. 
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:ig. 26.Functions supported by UKY-McshTool. 
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I'ig. 27.Mesh checking supported by UKY-McshTool. 
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Mesh tool also allows the user to extrude volume elements off of a surface. This is useful for 

creating coatings on a surface, extending a substrate or superstrate, etc. Again, curvilinear offset 

elements are supported via a scripted description. Alternatively, surface elements can be offset 

in a similar way for a SIE formulation. Mesh tool will also allow the user to superimpose 

multiple model geometries. This allows the user to re-use models, or to facilitate the building of 

more complex structures. 

Once a mesh is generated, some mesh quality checking is supported by MeshTool such as 

duplicate node checking (c.f, Fig. 27). It will also compare physical parameters with 

background parameters and eliminate any volume elements where these are identical since they 

will support a zero current. Also, when modeling surfaces, the direction of the normal vector as 

determined by the reciprocal unitary vector 53 of the surface patch is important to identify 

materials above and below. MeshTool will check for consistency of surface normal definition, 

and can flip surface normals locally or globally so that normals are consistent with the surface 

parameterization. 

Mesh Tool us es standard Legrange int erpolation for a geometry de scription. For example, 
aquadrilateral patch of order n is represented by (n +1) x (n +1) nodes that lie on the surface. In 

the unitary space, these nodes are uniformly spaced, as illustrated in Fig. 28.   Each node has a 
physical coordinate r k (j,k = 0,n).   The position at any arbitrary coordinate (ul,u2) can be 

obtained via interpolation: 

r>\uVII<*>;'(">!("% (65) 
A-=O 7=0 

where the interpolation polynomials are expressed as: 

<X>:(u) = R,(n,u)Rn_,(n,l-u) (66) 

where /?,.(«, H) is a Sylvester interpolation polynomial [38]: 

Rt{n,u) = 

/-l 

— T\(mt-k),        \<i<n 

1, / = 0 
It is noted that this interpolation procedure exactly represents a bi-linear quadrilateral when 

n = 1, bi-quadratic quadrilateral when n = 2, and a bi-cubic quadrilateral when n - 3.   It also 

represents interpolations to arbitrary order. 
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.2    ▲ 
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Fig. 28 Mapping of a fourth-order quadrilateral cell from the unitary space to the physical patch. 

The unitary vectors for each patch are also readily computed as: 

a, 
ör>V)- alx*:(«>i("% 

du' 8u' 
(68) 

A=0 j=0 

Analytical expressions for the derivatives of the interpolation polynomials are easily derived, and 

the derivatives of the Sylvester interpolation polynomials can be expressed via a recursive 

relationship that is efficiently computed. 

This scheme is general enough to interpolate surfaces up to arbitrary order. However, it still 

must be realized that the interpolation scheme is only C° continuous. And, for very high-orders 

(-« > 10) the interpolation operator can be ill conditioned. As a result, Gibb's phenomena can 

occur leading to small high spatial-frequency oscillation of the interpolated surface. One way 

that this has been addressed is that MeshTool can generate high-order meshes based on a non- 

uniform Gauss-Lobatto point spacing. Nevertheless, the uniformly spaced interpolation scheme 

proposed in (65) works quite well to reasonably high order (~ 10th order). The non-uniform 

spaced meshing has shown an improvement in accuracy for higher-order meshes. 

Finally, MeshTool exports the mesh for Mat-Scat and allows the user to define source 

excitation and post-processing directives (c.f, Fig. 29). 
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5     Technology Transfer 

5.A.   Publications 
Peer Reviewed Journals 
The following papers published in peer reviewed journals have reported in the open literature the 
results and methodologies developed under this contract: 
Dissertations 
[1] S. D. Gedney, "High-Order Method of Moment Solution of the Scattering by Three- 

Dimensional PEC Bodies using Quadrature Based Point Matching," Microwave and 
Optical Technology Letters, vol. 29, pp. 303-309, June 5, 2001. (5) 

[2] Stephen D. Gedney, Aiming Zhu , Wee-Hua Tang, Gang Liu, and Peter Petre , "A Fast, 
High-Order Quadrature Sampled Pre-Corrected FFT for Electromagnetic Scattering," 
Microwave and Optical Technology Letters, vol. 36, no. 5, pp. 343-349, March 5, 2003. (2) 

[3] S. D. Gedney and C. C. Lu, "High-Order Solution for the Electromagnetic Scattering by 
Inhomogeneous Dielectric Bodies," Radio Science, vol. 38, no. 1, art. no. 1015, 2003. 

[4] G. Liu and S. D. Gedney, "High-Order Moment Method Solution for the Scattering 
Analysis of Penetrable Bodies," Electromagnetics, vol. 23, no. 4, pp. 331-346, 2003. 

[5]    S. D. Gedney, "On Deriving a Locally Corrected Nyström Scheme from a Quadrature 
Sampled Moment Method," IEEE Transactions on Antennas and Propagation, vol. 51, no. 
9, pp. 2402-2412, Sept. 2003. 

[6]    A.   Zhu  and  S.   D.   Gedney,  "A   Quadrature   Sampled  Pre-Corrected  FFT   for  the 
Electromagnetic Scattering from Inhomogeneous Objects," IEEE Antennas and Wireless 
Propagation Letters, Vol. 2, no. 1, pp. 50-53, 2003. 

[7]    S. D. Gedney, A. Zhu, and C. C. Lu, "Study of Mixed-Order Basis Functions for the 
Locally-Corrected Nyström Method," IEEE Transactions on Antennas and Propagation, 
vol. 52 no. 1, pp. (in press), November 2004. 

[8]    S.   D.   Gedney,   "Implementing   the   Locally   Corrected   Nyström   method,"  Applied 
Computational Electromagnetics Society Newsletter, Vol. 18, no. 3, pp. 15-27, November 
2003. 

Conference Proceedings - Full Paper 
The following papers published as full papers in peer reviewed conference proceedings have 
reported in the open literature the results and methodologies developed under this contract: 

[ 1 ]    S. Gedney, A. Zhu, W. H. Tang, and P. Petre, "High-Order Pre-Corrected FFT Solution for 
Electromagnetic  Scattering,"  2002 IEEE International Symposium  on Antennas  and 
Propagation, San Antonio, TX, June 16-21, 2002. 

[2]    S. Gedney and C. C. Lu, "High-Order Integral Equation Solution for Scattering by 
Penetrable Inhomogeneous Volumes," 2002 IEEE International Symposium on Antennas 
and Propagation, San Antonio, TX, June 16-21, 2002. 

[3]    S. Gedney & C. C. Lu, "High-Order Integral Equation Solution Based On a Hybrid 
Volume/Surface Formulation," The Annual Review of Progress in Applied Computational 
Electromagnetics, Monterey, CA, March 24-28, 2003. 
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[4]    A. Zhu and S. Gedney, " A Fast, High-Order Integral Equation Solution for the Scattering 
by Inhomogeneous Objects," 2003 IEEE International Symposium on Antennas and 
Propagation, Columbus, OH, June 23-27, vol. 1, pp. 7-10, 2003. 

[5]    S. D. Gedney, R. Hannemann, J. Hannemann, G. Liu, and P. Petre, "A Fast Integral 
Equation  Solution Technique  for Printed  Circuits  in  Layered  Media,"  2003  IEEE 
International Symposium on Antennas and Propagation, Columbus, OH, June 23-27, pp. 3 
-6 vol.1, 2003. 

[6]    S. D. Gedney and C. C. Lu, "High-Order Integral Equation Solution for Scattering by 
Composite Materials," 2003 IEEE International Symposium on Antennas and Propagation, 
Columbus, OH, June 23-27, pp. 1055 - 1058 vol.2, 2003. 

[7]    S. D. Gedney, A. Zhu, C. C. Lu, "High-order Locally Corrected Nystrom Solution with 
Mixed-order Basis Functions for Electromagnetic Scattering", ACES Symposium, Syracuse, 
NY, April 19-23, paper no. 904178, pg. 1-6, 2004 

[8]    A.  Zhu,   S.   D.   Gedney,  "Comparison  of Müller  and  PMCHWT   Surface   Integral 
Formulations for the Locally Corrected Nystrom Method", 2004 IEEE International 
Symposium on Antennas and Propagation, Monterey, CA June 21-25, pp. 3871-3874, 2004 

[9]    A. Zhu, S. D. Gedney, C. Lu, "Fast, High-order, Hybrid Integral Equation Solver for 
Electromagnetic  Scattering,"  2004  IEEE International Symposium  on Antennas and 
Propagation, Monterey, CA June 21-25, pp. 1199 - 1202, 2004 

[10] L. Xuan, A. Zhu, R. J. Adams, S. D. Gedney, "A Broad Band Multilevel Fast Multipole 
Algorithm",   2004   IEEE  International  Symposium   on   Antennas   and  Propagation, 
Monterey, CA June 21-25, pp. 1195-1198, 2004 

[11]  S. D. Gedney, A. Zhu, C. C. Lu, "Mixed-Order Basis Functions for the Locally-Corrected 
Nystrom M ethod," 2004 IEEE International Symposium on Antennas and Propagation, 
Monterey, CA June 21-25, pp. 4044 - 4047, 2004 

The following dissertation has resulted from the funding of this program: 

Aiming Zhu, Ph.D. Dissertation, Fast, Hybrid High-Order Integral Solver for Electromagnetic 
Scattering, June 2004. 

5.B.   Inventions 
No patents have been applied for from this research. 
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